

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at $(800)\ 332-4345$ or $(574)\ 233-4777$.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Missouri	880
Alaska	IN00035	Montana	CERT0026
Arizona	AZ0432	Nebraska	NE-OS-05-04
Arkansas	IN00035	Nevada	IN00035
California	2920	New Hampshire*	2124
Colorado	IN00035	New Jersey*	IN598
Colorado Radiochemistry	IN00035	New Mexico	IN00035
Connecticut	PH-0132	New York*	11398
Delaware	IN035	North Carolina	18700
Florida*	E87775	North Dakota	R-035
Georgia	929	Ohio	87775
Hawaii	IN035	Oklahoma	D9508
Idaho	IN00035	Oregon (Primary AB)*	4074
Illinois*	200001	Pennsylvania*	68-00466
Illinois Microbiology	17767	Puerto Rico	IN00035
Illinois Radiochemistry	IN00035	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
Iowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-18-12
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA014	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
EPA	IN00035		

*NELAP/TNI Recognized Accreditation Bodies

Revision date: 03/14/2019

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: City of Fountain Report: 472936

Attn: Jasson Palmer Priority: Standard Written

116 South Main Status: Final

Fountain, CO 80817 PWS ID: CO0121275

		Sample Information											
EEA ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time								
4506185	Aga N4	537.1	12/05/19 14:00	Client	12/06/19 09:45								
4506186	Aga S1	537.1	12/05/19 14:02	Client	12/06/19 09:45								
4506187	Aga S2	537.1	12/05/19 14:04	Client	12/06/19 09:45								
4506188	Aga S4	537.1	12/05/19 14:06	Client	12/06/19 09:45								
4506189	Aga Raw	537.1	12/05/19 14:08	Client	12/06/19 09:45								
4506190	Well 3 W4	537.1	12/05/19 14:30	Client	12/06/19 09:45								
4506191	Well 3 E1	537.1	12/05/19 14:32	Client	12/06/19 09:45								
4506192	Well 3 E2	537.1	12/05/19 14:34	Client	12/06/19 09:45								
4506193	Well 3 E4	537.1	12/05/19 14:36	Client	12/06/19 09:45								
4506194	Well 3 Raw	537.1	12/05/19 14:38	Client	12/06/19 09:45								

Report Summary

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Kelly Blackburn at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Kelly Blackbourn ASM

12/26/2019

Authorized Signature Title Date

Client Name: City of Fountain

Report #: 472936

Sampling Point: Aga N4 PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	5.3	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	15	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	3.3	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	6.8	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:36	4506185			

Sampling Point: Aga S1 PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	9.2	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 10:53	4506186			

Sampling Point: Aga S2 PWS ID: CO0121275

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#		
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	5.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:10	4506187		

Sampling Point: Aga S4 PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:27	4506188			

Sampling Point: Aga Raw PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	21	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	24	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	26	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	7.6	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	36	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 11:44	4506189			

Sampling Point: Well 3 W4 PWS ID: CO0121275

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#		
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	2.4	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:18	4506190		

Sampling Point: Well 3 E1 PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 12:52	4506191			

Sampling Point: Well 3 E2 PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:10	4506192			

Sampling Point: Well 3 E4 PWS ID: CO0121275

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#		
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:27	4506193		

Sampling Point: Well 3 Raw PWS ID: CO0121275

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#			
335-67-1	Perfluorooctanoic acid (PFOA)	537.1		2.0	15	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	537.1		2.0	27	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537.1		2.0	15	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537.1		2.0	6.7	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537.1		2.0	32	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			
375-95-1	Perfluorononanoic acid (PFNA)	537.1		2.0	< 2.0	ng/L	12/13/19 07:59	12/14/19 13:44	4506194			

[†] EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / **Surrogate Analyte (SUR)** - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

💸 eurofins

Eaton Analytical

Batch # 472 936

Order # 376770

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

* SAXXXXXXX S B B B B B B B B B B B B B B B			5		The state of the s				,	
STATE (sample origin) PROJECT NAME PO#	REPORT TO:	use only		AIN OF	CUSIODI RECOL	Q		Page	to	4
TWA PLANCE NO POPULATION SERVED SOURCE WATER OF C MORPLIANCE MONITORING THE SAMPLING SITE TEST NAME SAMPLE REMARKS CHLORINATED COMPLIANCE STATE OF C CLA PFC C			SAMPLER (Signature)		PWS ID#	STATE (sample origin)	PROJECT NAME	#Od	-	_
COMPLIANCE MOINTORING SITE NO POPULATION SERVED SOURCE WATER OF C CHORINATED CHLORINATED C	Justin Moore				CO Ø121275	CO	Weekly			
SAMPLING SITE	BILL TO:			No	POPULATION SERVED	SOURCE WATER	OFC		SA	HIME
Ago NY Ago NY Ago NY Ago S2 Ago S3 Ago S4 Ago S4	116 S. Main St. Found	lain. LO 80817	2.00	×	27,000	Welt 3				CODE
USA USA-19 USA-	LAB Number	COLLECTION	SAMPLI		TEST NAM	/IE	SAMPLE REMARKS	CHLORINATED	-	
186 125-19 2:00 X Aga N4 186 125-19 2:02 X Aga 51 187 125-19 2:02 X Aga 52 188 125-19 2:02 X Aga 52 188 125-19 2:02 X Aga 52 189 125-19 2:02 X Aga 52 189 125-19 2:02 X Aga 52 189 125-19 2:02 X Aga 84 189 125-19 2:02 X Well 3 W4 199 192 125-19 2:02 X Well 3 E1 199 192 125-19 2:03 X Well 3 E1 199 199 125-19 2:03 X Well 3 E4 199 195 195 195 195 195 195 195 195 195	DATE	TIME								
186 12.5-19 2.5-2 X		4 2:00 X						×		S 50
187 12-5-19724 X Ago S2 PFC CUA	781	9 2:01 X						<u></u>	2	Je 20
188 12-19 1206 X A86 8AW PFC CLA 12 062014 X 12 140 12 1202 X 140 X	187	19 7,04 X							2	D~ 5w
164 12-19 12-08 X 446 RAW PFC CLA 12 062019 X 7 1 140 12-19 2:32 X WELL 3 WY PFC CLA 12 062019 X 1 192 12:32 X WELL 3 E.I PFC CLA PFC CLA X 1 193 12:5-19 2:33 X WELL 3 E.I PFC CLA PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 2 X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PFC CLA X 1 194 12:5-19 2:33 X WELL 3 RAW PF	287	x 7012 bl	A800 54							WS NO
190 125-19 2:30 X W211 3 W4 PPC CLA LD X 1 191 125-19 2:32 X W211 3 E 1 192 125-19 2:32 X W211 3 E 1 193 125-19 2:34 X W211 3 E 4 194 12:5-19 2:33 X W211 3 RAW PFC CLA 194 12:5-19 2:33 X W211 3 RAW PFC CLA 194 12:5-19 2:33 X W211 3 RAW	1,87	19 2:08 X				12	062019	×		ON 50
192 125-19 2:32 x Well 3 E I 192 125-19 2:34 x Well 3 E P 193 125-19 2:35 x Well 3 E P 194 125-19 2:33 x Well 3 RAW 199 125-19 2:33 x Well 3 RAW 199 125-19 2:33 x Well 3 RAW	190		1 3				d2	×		WS 200
192 125-197:34 x Well 3 E2 193 125-197:36 x Well 3 E4 194 12:5-192:33 x Well 3 RAW PFC CUA PFC CUA X 2 X 2	161		Well 3 E !			/		×	2 00 S	28 2
193 2.5-19 2:36 X Well 3 E4 PFC CLA X 2 J 194 (2:5-192:33 X Well 3 RAW PFC CLA X 2	192		Well 3 EZ			/		×	2 gr 5w	N 5m
4 194 (2:5-192:33 X Well 3 RAW) PFC RLP X 2	193		Well 3 64			/			0 2	DU 82
11 12 13 14	hb1 4		3						7 0	00 SW
13	11									
13	12					_				
14	13									
	14									

RELINQUISHED BY:(Signature)	DATE TIME RECEIVED BY:(Signature)	DATE	TIME	LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT
your tune	547 17-5-11		LAB COMMENTS	MENTS
RELINQUISHED BY:(Signature)	AM (Pb) DATE TIME RECEIVED BY:(Signature)	DATE	AM PM TIME	
	AM PM		AM PM	
RELINQUISHED BY:(Signature)	DATE TIME RECEIVED FOR LABORATORY BY:	DATE	TIME	PONDITIONS UPON RECEIPT (check one):
	()	12/10/19	0940	loed Wet/Blue Ambient Or S C Unon Receipt
	AM PM	1	AM PM	
MATRIX CODES:	TURN-AROUND TIME (TAT) - SURCHARGES			
DW-DRINKING WATER	SW = Standard Written; (15 working days) 0%	IV* = Immediat	IV* = Immediate Verbal: (3 working days)	100%
RW-REAGENT WATER GW-GROUND WATER	RV* = Rush Verbal: (5 working days) 50%	IW* =Immediat	IW* =Immediate Written: (3 working days)	125% Samples received unannounced with less
EW-EXPOSURE WATER	RW* = Rush Written: (5 working days) 75%	SP* = Weekend, Holiday	d, Holiday	CALL than 48 hours holding time remaining may
SW-SURFACE WATER PW-POOL WATER		STAT* = Less than 48 hours	than 48 hours	CALL De subject to additional charges,
WW-WASTE WATER	* Please call, expedited service not available for all testing			

Sample analysis will be provided according to the standard EEAWater Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by EEA.